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Chapter 5

Synchronous Sequential Logic

Chapter 5 2

Introduction

• Circuits require memory to store intermediate data
• Sequential circuits use a periodic signal to 

determine when to store values.
– A clock signal can determine storage times
– Clock signals are periodic

• Single bit storage element is a flip flop
• A basic type of flip flop is a latch
• Latches are made from logic gates

– NAND, NOR, AND, OR, Inverter
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Synchronous vs. Asynchronous

• Synchronous sequential circuit is a system 
whose behavior can be defined from the 
knowledge of its signal at discrete instants 
of time

• Asynchronous sequential circuit is a system 
whose behavior can be defined from the 
knowledge of its signals at any point of time

Chapter 5 4

Synchronous Sequential Circuit

Combinational 
circuit Flip 

Flops

OutputsInputs

Next
state Present

state

Timing signal 
(clock)

Clock
Clock
a periodic external event 
(input)

Clock
a periodic external event 
(input)
synchronizes when current state changes happen 

keeps system well-behaved
makes it easier to design and build large systems

synchronizes when current state changes happen 
keeps system well-behaved

makes it easier to design and build large systems
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Cross Coupled Inverters

0 

1 

1 

0 

State 1 State 2
What if there is an inverter in 
the feedback path?

Chapter 5 6

SR Latch using NOR

1  1
1  0
0  1
0  0

S    R    Q    Q’

0  1

1  0 Set

1  0 Stable

0  1 Reset

R (reset)

Q

Q

S (set)

°S-R latch made from cross-coupled NORs
°If Q = 1, set state
°If Q = 0, reset state
°Usually S=0 and R=0
°S=1 and R=1 generates unpredictable results
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SR latch using NAND
S

R

Q 

Q’

0  0
0  1
1  0
1  1

S    R    Q     Q’

0  1

1  0 Set

Store

0  1 Reset

1  1 Disallowed

• Latch made from cross-coupled NANDs
• Sometimes called S’-R’ latch
• Usually S=1 and R=1
• S=0 and R=0 generates unpredictable results

Chapter 5 8

SR Latch
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SR Latch with Control Input

°Occasionally, desirable to avoid latch changes
°C = 0 disables all latch state changes
°Control signal enables data change when C = 1
°Right side of circuit same as ordinary S-R latch.

Chapter 5 10

SR Latch with Control Input

R’

S’
Q’

Q

C’

Outputs change 
when C is low:

RESET and SET
Otherwise: HOLD

Outputs change Outputs change 
when C is low:when C is low:

RESET and SETRESET and SET
Otherwise: HOLDOtherwise: HOLD
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D Latch

Q 

Q’

C 

D S

R

X

Y

Chapter 5 12

D Latch

• One wat to avoid the indeterminate state in 
the SR latch when both S and R are This is 
done by inverting S and having the inverted 
S as R.

• As long as C=0, no change. If C=1 D is 
delivered to Q and D’ to Q’ C   D    Q   Q’

0    X    Q   Q’
1     1     1    0
1     0     0    1
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Symbols

Setting and 
resetting is done 
using logical 0 
signal

Chapter 5 14

Flip-Flops
• The state of the latch or flip-flop is switched by a 

change in the control input, this is called a trigger
• The D latch with pulses in its control input. As 

long as the pulse input is 1, any changes in the D 
input is transferred to the output.

• When the state of the latch changes, if the control 
pulse is still at logic 1, any changes to the input 
(possible a feedback from the output) will change 
the output.

• Because of this, the output of a latch can not be 
applied directly to the input of this or other latches
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Flip-Flop

• A better way is if the flip-flop is triggered during 
the transition of the control input.

• A clock pulse goes through 2 transitions, 1->0 and 
0->1.

• The first is called –ve edge, the second is positive 
edge.

• There are two ways to implement this, either by 
using master-salve or by special design of the 
circuit.

Chapter 5 16

Edge-Triggered Flip-Flop
(Master-Slave)

Any changes in the input can affect only Y as long as 
CLK=1; After CLK=0, Y propagates to Q, byt the master is 
locked.
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D-Type Positive-Edge-triggered 
Flip-Flop

CLK D S R Q Q’

0 1 1 Q Q’

1 1 0 1 1 0

1 0 1 0 1 1

1 1 1 0 1 1

Chapter 5 18

Edge-triggered Flip-Flop

LoLo--HiHi edge HiHi--LoLo edge
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J-K Flip-Flop

°Created from D flop
°J sets
°K resets
°J=K=1 -> invert output

Chapter 5 20

Positive Edge Triggered T Flip-Flop

°Created from D flop
°T=0 -> keep current
°K resets
°T=1 -> invert current
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Characteristic Tables

• Characteristic tables Describes the 
operation of the flip-flop in a tabular form

JK Flip Flop

J   K     Q(t+1)

0  0       Q(t)

0  1       0

1  0       1

1  1       Q’(t)

D Flip Flop

D Q(t+1)

0 0

1 1

F Flip Flop

T Q(t+1)

0 Q(t)

1 Q’(t)

Chapter 5 22

Characteristic Equation

• For D Flip-Flop

• For JK Flip-Flop

• For T Flip-Flop

Q(t+1)=D

Q(t+1)=JQ’ + K’Q

Q(t+1)=T ⊕ Q = TQ’ + T’Q
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Analysis of Clocked Sequential 
Circuits

• State equation, state table
• State diagram: states are represented by 

circuits, transitions by arcs labeled I/O
• Flip-Flop Equations: 

Chapter 5 24

Analysis

y(t)  =  x(t)Q1(t)Q0(t)
Q0(t+1) =  D0(t) = x(t)Q1(t)
Q1(t+1) =  D1(t) = x(t) + Q0(t)

x
Q1

Q0

D
Q

Q’

D
Q

Q’

y

Q0

Q1

D0

D1

ClkOutput equation

State equations
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State Table
• Sequence of outputs, inputs, and flip flop states enumerated 

in state table
• Present state indicates current value of flip flops
• Next state indicates state after next rising clock edge
• Output is output value on current clock edge

0 0   
0 1
1 0
1 1 

Present
State

Next State

x=0    x=1 
00       10            0        0      
10       10            0        0
00       11            0        0
10       11            0        1

Q1(t) Q0(t)         Q1(t+1) Q0(t+1)

x=0    x=1 

Output

State Table

Chapter 5 26

State Table
• All possible input combinations enumerated
• All possible state combinations enumerated
• Separate columns for each output value.
• Sometimes easier to designate a symbol for each state.

Present
State

Next State

x=0    x=1 
s0 s2 0        0      
s2 s2 0        0
s0 s3 0        0
s2 s3 0        1

x=0    x=1 

Output

s0
s1
s2
s3

Let:
s0 = 00
s1 = 01
s2 = 10
s3 = 11
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State Diagram

0 0   
0 1
1 0
1 1 

Present
State

Next State

x=0    x=1 
00       10 0        0
10       10 0        0
00       11 0        0
10       11 0        1

x=0    x=1

Output

Chapter 5 28

State Diagram
° Each state has two arrows leaving

° One for x = 0 and one for x = 1
° Unlimited arrows can enter a state
° Note use of state names in this example

° Easier to identify 

s1 s2s0
0/0 1/0

0/01/0

0/00/0

s3

1/1

1/0
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Flip-Flop Input Equations
° Boolean expressions which indicate the input to 

the flip flops.

DQ0 = xQ1
DQ1 = x + Q0

Format implies type of flop used

x
Q1

Q0

D
Q

Q’

D
Q

Q’

y

Q0

Q1

D0

D1

Clk

Chapter 5 30

Analysis with D Flip-Flop
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J-K Flip-Flop

J

K

J

K

CLK

Chapter 5 32

J-K Flip Flop

Present Input Next Flip-Flop Inputs
A    B                 X A   B JA KA JB KB
0    0 0 0    1 0       0      1     0
0    0 1 0    0 0       0      0     1
0    1 0 1    1 1       1      1     0
0    1 1 1    0 1       0      0     1
1    0 0 1    1 0       0      1     1
1    0 1 1    0 0       0      0     0
1    1 0 0    0 1       1      1     1
1    1 1 1    1 1       0      0     0
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J-K Flip-Flop

01

1100

10

1 1

1

1

0

0

0 0

Chapter 5 34

Mealy and Moore Models

• Mealy model: the output is a function of both the 
present state and the input.

• Moore model: The output is a function of the 
present state only.

• In a Moore model, the output is synchronized with 
the clock (since it changes only if the state 
changes).

• In a Mealy model the output may change if the 
input changes during the clock cycle.
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HDL For Sequential Circuits

Chapter 5 36

Behavioral Modeling

initial

begin

clock=1’b0;

repeat(30)

#10 clock = ~clock

end

initial

begin

clock = 1’b0;

#300 $finish;

end;

always

#10  clock=~clock;
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Behavioral Modeling

• One ways to use always statement

• What fellows will be done if any changes in 
A, B, or reset,

• Or, we can use

always @ (A or B or reset)

Always @ (posedge clock or negedge reset)

Chapter 5 38

Behavioral Modeling

• Blocking assignmnet

• A is assigned to B, and the new value is 
incremented

• Non-blocking assignment

• Incrementing old value of A, because assignment 
is done after all the values in the block are done

B=A;
C=B+1;

B<=A;  C<=B+1;
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Flip-Flops and Latches

//Description of D latch
module D_Latch (Q,D,control);

output Q;
input D, control;
reg Q;
always @ (control or D)
if (control) Q=D;

endmodule

//D Flip-Flop
module D_FF(Q, D, CLK);

output Q;
input D, CLK;
reg Q;
always @ (posedge CLK)

Q=D;
endmodule

Chapter 5 40

Flip-Flops and Latches

//D Flip-Flop with Asynchronous reset
module DFF(Q,D,CLK,RST);

output Q;
input D, CLK,RST;
reg
always @(posedge CLK or negedge RST);

if(~RST)  Q=1’b0;
else Q=D;

endmodule

Only if RST=1 can posedge clock 
event synchronously D->Q
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Other Types of Flip-Flop

//F Flip-Flop (using D)

Module TFF(Q,T,CLK,RST);

Output Q;

Input T,CLK,RST;

Wire DT;

Assign DT=Q^T;

DFF TF1(Q,DT,CLK,RST);

endmodule

//JK Flip-Flop (using D)

Module JKFF(Q,T,CLK,RST);

Output Q;

Input JK,CLK,RST;

Wire JK;

Assign JK=(J&~Q)|(~k&Q);

DFF JK1(Q,JK,CLK,RST);

endmodule

Chapter 5 42

Other Types of Flip-Flop
//Functional Description of JK Flip-Flop

Module JK_FF(J,K,CLK,Q,Qnot);
output Q,Qnot;

input J,K,CLK;

reg Q;
assign Qnot=~Q

allways @ (posedge CLK)

case ({J,K})
2’b00: Q=Q;

2’b01: Q=1’b0;

2’b10: Q=1’b1;
2’b11: Q=~Q;

endcase
endmodule
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State Diagram
//Mealy state diagram 
module Mealy_Model(x,y,CLK,RST);
input x,CLK,RST;
output y;
reg y;
reg [1:0] Prstate, Nxtstate;
parameter S0=2’b00, s1=2’b01, s2=2’b10, S3=2’b11;
always @ (posedge CLK or negedge RST)

if(~RST) Prstate = S0;
else Prstate=Nxtstate;

always @ (Prstate or x)
case(Prstate)

S0: if(x) Nxtstate = S1;
else Nxtstate = S0;

S1: if (x) Nxtstate = S3;
else Nxtstate = S0;

S2: if (x) Nxtstate = S0;
else Nxtstate = S2;

S3: if(x) Nxtstate = S2;
else Nxtstate = S0;

endcase

always @ (Prstate or x)
case(Prstate)

s0: y=0;
S1: if (x) y=1’b0; else y=1’b1;
S2: if (x) y=1/b0; else y=1’b1;
S3: if (x) y=1’b0; else y=1’b1;

endcsde
endmodule

Chapter 5 44

State Diagram
//Moore state diagram 
module Mealy_Model(x,AB,CLK,RST);
input x,CLK,RST;
output [:0]AB;;
reg [1:0] State;
parameter S0=2’b00, s1=2’b01, s2=2’b10, S3=2’b11;
always @ (posedge CLK or negedge RST)

if(~RST) Prstate = S0;
else Prstate=Nxtstate;

always @ (Prstate or x)
case(Prstate)

S0: if(~x) State = S1;
else State = S0;

S0: if (x)  State = s2;
else State = S3;

S0: if (x) State = S3;
else State = S2;

S0: if(x) State = S0;
else State = S3;

endcase
assign AB=State;
endmodule
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Structural Description
//Figure 5-20 in the text book
module TCircuit(x,y,A,B,CLK,RST);

input x. CLK, RST;
output y,A,B;
wire TA,TB;
//Flip-Flop input equation
assign TB=x,

TA=x & B;
assign y = A & B;

// Instantiate 2 ff’s
T_FF BF (B,TB,CLK,RST);
T_FF AF (A,TA,CLK,RST);

endmodule

Chapter 5 46

Structural Description
//test fixture for the previous design
module testTFF;

reg x, CLK, RST;
wire y,A,B;
TCircuit (x,y,A,B,CLK,RST);
initial

begin
RST=0;
CLK=0;

#5 RST = 1;
repeat (16);

#5 CLK= ~CLK;
end

initial
begin
x=0;
#15 x=1;
repeat (8);
#10 x=~x
end;

endmodule
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State Reduction and Assignment
• In this part, we study some properties of the 

sequential circuits in order to reduce the number 
of gates or flip-flops.

• If we have m flip-flops, we can have up tp 2m

states.
• Thus reducing the number of states, may result in 

reduction of the number of flip-flops.
• Sometimes, we care only about the output 

produced by a specific input sequence, while in 
others (counters) the states are important 
(considered as the output).

Chapter 5 48

State Reduction and Assignment

• There are infinite number of sequences that could 
be applied to the circuit, producing some output.

• Two circuits (may have different states) will 
produce the same output for the same input are 
considered equivalent (from the input output point 
of view).

• We want to find a way to reduce the number of 
states and keeping the same input-output 
equivalence.
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State Reduction
State a     a     b c     d     e     f      g     f     g

Input 0     1     0     1     0     1     1     0     0     0

Output 0     0     0     0     0     1     1     0     0     0

Chapter 5 50

State reduction
next state Output

Present State x=0  x=1 x=0  x=1

a a       b 0       0 

b c       d 0       0

c a       d 0       0

d e       f 0       1

e a       f 0       1

f g       f 0       1

g a       f 0       1

look for any two state that go to the same next state and have the same 
output for both input combination  (states g and e), remove one and 
replace it by the other
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State reduction
next state Output

Present State x=0  x=1 x=0  x=1

a a       b 0       0 

b c       d 0       0

c a       d 0       0

d e       f 0       1

e a       f 0       1

f e       f 0       1

States d and f are equivalent

Chapter 5 52

State reduction
next state Output

Present State x=0  x=1 x=0  x=1

a a       b 0       0 

b c       d 0       0

c a       d 0       0

d e       d 0       1

e a       d 0       1
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State Assignment

• In this stage, you have to map states to 
binary numbers. You can use any mapping 
scheme.
– binary
– Gray code
– one-hot (more flip-flops)

Chapter 5 54

Design Procedure

• From the word description Derive the state 
diagram

• Reduce the number of states if necessary
• Assign Binary values to states.
• Obtain the binary-coded state table
• Choose the type of flip-flop 
• Derive the simplified flip-flop input and output 

equations
• Draw the logic diagram
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Design

• Design a circuit that detects three or more 
consecutive ones.

S0
S1 S2 S3

0
1 1 1

0
0

0

Chapter 5 56

State table for sequence detector
Present

State
Next 
State

A  B       x        A   B            y 
0   0        0        0    0            0      
0   0        1        0    1            0
0   1        0        0    0            0
0   1        1        1    0            0
1   0        0        0    0            0      
1   0        1        1    1            0
1   1        0        0    0            1
1   1        1        1    1            1

OutputInput
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Synthesis with D Flip-Flops

• Construct the state table

ABy
xBAxD

BxAxD

xBAy

xBADtB

XBADtA

B

A

ABx

ABX
B

ABX
A

=
+=
+=

=

==+

==+

∑

∑

∑

'

)7,6(),,(

)7,5,1(),,()1(

)7,5,3(),,()1(

Chapter 5 58

Synthesis with D Flip-Flops
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Synthesis with J-K Flip-Flop

• With J-K flip-flop, it is not as easy as D, 
since the output is not the same as the 
previous input, we need an excitation table

Q(t) Q(t+1) J  K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

Q(t) Q(t+1) T

0 0 0

0 1 1

1 0 1

1 1 1

Chapter 5 60

Synthesis with J-K Flip-Flop
Present

State
Next 
State

A  B       x        A   B            y JA  KA JB  KB
0   0        0        0    0            0 0      X  0      X   
0   0        1        0    1            0 0      X 1      X
0   1        0        0    0            0 0      X X      1
0   1        1        1    0            0 1      X X      1
1   0        0        0    0            0 X      1 0      X
1   0        1        1    1            0 X      0 1      X
1   1        0        0    0            1 X      1 X      1
1   1        1        1    1            1 X      0 X      0

OutputInput
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Synthesis with J-K Flip Flop

Chapter 5 62

Synthesis with J-K Flip-Flop
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Example: Odd Number of 1’s
Assert output whenever input bit stream has odd # of 1's

Even 
[0]

Odd 
[1]

Reset

0

0

1 1

State
Diagram

° Note: Present state and output are the same value

Output 
0 
0 
1 
1

Next  State 
0 
1 
1 
0

Input  
0 
1 
0 
1

Present State 
0 
0 
1 
1

Chapter 5 64

Odd Number of 1’s
Example: Odd Parity Checker

Next State/Output Functions
NS = PS xor PI;   OUT = PS

D

R

Q

Q

Input

CLK PS/Output

\Reset

NS

Clk 

Output 

Input 1 0 0 1 1 0 1 0 1 1 1 0 

1 1 0 1 0 0 1 1 0 1 1 1 
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Vending Machine

Vending 
Machine 

FSM

N

D

Reset

Clk

Open
Coin 

Sensor Gum 
Release 

Mechanism

Deliver package of gum after 15 cents deposited

Single coin slot for dimes, nickels

No change

Design the FSM using combinational logic and flip flops

Chapter 5 66

Vending Machine
Reset

N

N

N, D

[open]

15¢

0¢

5¢

10¢

D

D

Reuse states
whenever possible

Reuse statesReuse states
whenever possiblewhenever possible Symbolic State TableSymbolic State Table

Present 
State 

0¢  
 
 
 

5¢ 
 
 
 

10¢ 
 
 
 

15¢ 

D  
0  
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
X 

N  
0  
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
X 

Inputs Next 
State 

0¢  
5¢ 
10¢ 
X 
5¢ 
10¢ 
15¢ 
X 

10¢ 
15¢ 
15¢ 
X 

15¢ 

Output 
Open 

0  
0 
0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
1 
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State encoding
Next State 

D 1  D 0  
0      0 
0     1 
1     0 

 X    X 
0     1 
1     0 
1     1 
X    X 
1     0 
1     1 
1     1 
X    X 
1     1 
1     1 
1     1 

X     X 

Present State 
Q 1  Q 0  
0      0 

 
 
 

0     1 
 
 
 

1     0 
 
 
 

1     1 

D  
0  
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

N  
0  
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

Inputs Output 
Open 

0  
0 
0 
X 
0 
0 
0 
X 
0 
0 
0 
X 
1 
1 
1 
X 

Chapter 5 68

Vending Machine

K-map for OpenK-map for D0 K-map for D1

Q1 Q0
D N

Q1

Q0

D
N

Q1 Q0
D N

Q1

Q0

D
N

Q1 Q0
D N

Q1

Q0

D
N

D1=D+Q1+NQ0
D0=NQ1+NQ’0+Q0N’+
DQ1

Q1Q0
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Vending Machine
D     Q  

QR

D     Q  

QR

Q0

N

N

Q0

Q1

N

Q1

D

D0

D1 Q1

OPEN

D

0Q

N
CLK

CLK

0Q

1Q

Q1

Q0

Reset

Reset

Chapter 5 70

3-bit Binary Counter
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3-Bit Binary Counter

Present State Next State F-F Inputs

A2 A1 A0 A2 A1 A0 TA2 TA1 TA0

0   0   0                         0   0   1                     0     0    1

0   0   1 0   1   0 0     1    1

Chapter 5 72

3-Bit Binary Counter
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3-Bit Binary Counter

Chapter 5 74

Example (Mealy vs. Moore)

• Design a circuit that asserts its output for 
one cycle for every change in the input from 
0 to 1

• We will try two different approaches.
• Compare between them
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Solution 1

ZERO
OUT=0

CHANGE
OUT=1

ONE
OUT=0

IN=1

IN=1

IN=1 IN=0

IN=0

IN=0 IN   PS    NS  OUT
0    00     00    0
1    00     01    0
0    01     00    1
1    01     11    1
0    11     00    0
1    11     11    0

ZERO

CHANGE

ONE

Chapter 5 76

Solution 1

FF

FF

OUT

IN

NS1

NS0

PS1

PS0

IN   PS    NS  OUT
0    00     00    0
1    00     01    0
0    01     00    1
1    01     11    1
0    11     00    0
1    11     11    0

ZERO

CHANGE

ONE

      00   01   11   10
0     0   0   0    -
1     0   1   1    -

PS

IN

      00   01   11   10
0     0   0   0    -
1     1   1   1    -

PS

IN

      00   01   11   10
0     0   1   0    -
1     0   1   0    -

PS

IN

NS1= IN PS0

NS0= IN

OUT= PS1 PS0
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Solution 2

ZERO

ONE

IN=0
OUT=0

IN=1
OUT=1

IN=0
OUT=0

IN=1
OUT=0

FF

OUT

NS PS
IN

IN   PS   NS   OUT
0     0      0       0
0     1      0       0
1     0      1       1
1     1      1       0

Let ZERO=0,
ONE=1

NS = IN, OUT = IN PS’

Chapter 5 78

Comparison

IN

PS0

PS1

OUT



40

Chapter 5 79

Comparison

IN

PS

OUT
Output may not be high long 
enough to be of any use

Chapter 5 80

Comparison

OUT (solution A)

IN

OUT (solution B)

CLK


