

• Ch	aracterist	tic table			
			es Describ	es the	
op	eration of	f the fli	p-flop in a	a tabul	ar form
JK Fl	ip Flop	_ D Fl	ip Flop	F Fl	ip Flop
K	Q(t+1)	D	Q(t+1)	Т	 Q(t+1)
0 0	Q(t)	0	0	0	Q(t)
) 1	0	1	1	1	Q'(t)
	1	I		I	
10	1				

	St	ate	Tał	ole			
All possible	input con	nbinat	ions e	numer	ated		
All possible	state com	nhinati	ons er	umera	ited		
Sonoroto col	lumps for	angle (voluo	iicu		
Separate co	iunins for		Juipui	value.	c		
Sometimes	easier to d	lesigna	ate a sy	ymbol	for ea	ich stat	e.
	Present	Next	State	Out	put		
Let	Present State	Next x=0	State x=1	Outj x=0	put x=1		
Let: $s_0 = 00$	Present State	Next x=0 s_0	State x=1 s_2	0 ut = 0 0	$\frac{x=1}{0}$		
Let: $s_0 = 00$ $s_1 = 01$	$\frac{\frac{\text{Present}}{\text{State}}}{\frac{s_0}{s_1}}$	Next x=0 s_0 s_2	State x=1 s_2 s_2	Out x=0 0 0	$\frac{x=1}{0}$		
Let: $s_0 = 00$ $s_1 = 01$ $s_2 = 10$	$\frac{\frac{\text{Present}}{\text{State}}}{\frac{\text{S}_0}{\text{S}_1}}$	Next x=0 s_0 s_2 s_0	State x=1 s_2 s_2 s_3	Out x=0 0 0 0	$\frac{x=1}{\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}}$		
Let: $s_0 = 00$ $s_1 = 01$ $s_2 = 10$ $s_3 = 11$	$\frac{\frac{\text{Present}}{\text{State}}}{\frac{\text{S}_0}{\text{S}_1}}$	Next x=0 s_0 s_2 s_0 s_2 s_0 s_2	State x=1 s_2 s_2 s_3 s_3	Outp x=0 0 0 0 0			
Let: $s_0 = 00$ $s_1 = 01$ $s_2 = 10$ $s_3 = 11$	$\frac{\frac{\text{Present}}{\text{State}}}{\frac{\text{S}_0}{\text{S}_1}}$	Next x=0 s_0 s_2 s_0 s_2 s_0 s_2	State x=1 s_2 s_2 s_3 s_3 s_3	Outj x=0 0 0 0 0	$\frac{x=1}{0}$ 0 0 1		

Present	Next	State	Out	put
State	x=0	x=1	x=0	x=1
0 0	00	10	0	0
01	10	10	0	0
10	00	11	0	0
11	10	11	0	1

	J-K	K Flip Fl	op			
Present	Input	Next	Flij	p-Flop	o Inp	uts
A B	Х	A B	J_A	K _A	J_{B}	K _B
0 0	0	0 1	0	0	1	0
0 0	1	0 0	0	0	0	1
0 1	0	1 1	1	1	1	0
0 1	1	1 0	1	0	0	1
1 0	0	1 1	0	0	1	1
1 0	1	1 0	0	0	0	0
1 1	0	0 0	1	1	1	1
1 1	1	1 1	1	0	0	0
		Chapter 5				32

	next state	Output
Present State	x=0 x=1	x=0 x=1
a	a b	0 0
b	c d	0 0
c	a d	0 0
d	e f	0 1
e	a f	0 1
f	g f	0 1
g	a f	0 1
look for any tw	o state that go to t	he same next state and have the same

						-	
W /:	4h T IZ	flim	flor				
W1	tn J-K	mp-	-nop, i		ot as easy	as D,	
s1n	ce the	outp	ut 1s r	not the	same as	the	
	•	-				4 1 1	
pre	vious	inpu	t, we i	need a	n excitati	on table	9
pre	evious	inpu	t, we i	need a:	n excitati	on table	e
pre	Q(t+1)	inpu J	t, we in $\frac{\kappa}{\kappa}$	need a: $Q(t)$	Q(t+1)	on table	e
$\frac{Q(t)}{0}$	Q(t+1) 0	inpu J	$\frac{\kappa}{x}$	$\frac{Q(t)}{0}$	$\frac{Q(t+1)}{0}$	$\frac{T}{0}$	e
$\frac{Q(t)}{0}$	Q(t+1) 0 1	inpu J 0 1	t, we find $\frac{\kappa}{x}$	$\frac{Q(t)}{0}$	$\frac{Q(t+1)}{0}$	$\frac{T}{0}$	2
$\frac{Q(t)}{0}$	Q(t+1) 0 1 0	j J 1 X	$\frac{K}{x}$	$\frac{Q(t)}{0}$	$\frac{Q(t+1)}{0}$	$\frac{T}{0}$	2

	Sv	nthe	cic u	vith	I_K	r Fli	n_F	lon	
Present	ЪУ Input	Next State	2515 W	111	l J-I <u>N</u>		р-т [,]	юр	
A B	x	A B	y	JA	KA	JB	KB		
0 0	0	0 0	0	0	Х	0	Х		
0 0	1	0 1	0	0	Х	1	Х		
0 1	0	0 0	0	0	Х	Х	1		
0 1	1	1 0	0	1	Х	Х	1		
1 0	0	0 0	0	Х	1	0	Х		
1 0	1	1 1	0	Х	0	1	Х		
1 1	0	0 0	1	Х	1	Х	1		
1 1	1	1 1	1	Х	0	Х	0		
				Chaj	oter 5				60

